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Abstract

Evolutionary change over time in the context of data pipelines is certain, especially with regard to the structure and semantics
of data as well as to the pipeline operators. Dealing with these changes, i.e. providing long-term maintenance, is costly. The
present work explores the need for evolution capabilities within pipeline frameworks. In this context dealing with evolution
is defined as a two-step process consisting of self-awareness and self-adaption. Furthermore, a conceptual requirements
model is provided, which encompasses criteria for self-awareness and self-adaption as well as covering the dimensions data,
operator, pipeline and environment. A lack of said capabilities in existing frameworks exposes a major gap. Filling this gap
will be a significant contribution for practitioners and scientists alike. The present work envisions and lays the foundation for

a framework which can handle evolutionary change.
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1. Introduction

The last decade was characterized by ever increasing
amounts of data. This also led to new technical demands
in the context of data storage, transfer and analysis. In
order to cope with these demands complex new systems
emerged, which in turn require maintenance. Providing
this maintenance is costly and even though the systems
themselves might run as expected, changes over time,
e.g. to the structure and semantics of data, inevitably
induce a need to adjust the systems configuration to re-
store functionality. One estimate suggests that 50-70%
of the total cost of a long running software system can
be attributed to maintenance [1]. Data pipelines are an
intuitive way to structure end-to-end data processing.
The corresponding tools and frameworks are used in a
wide field of domains and for an extensive amount of
diverse applications. Still, they also need costly mainte-
nance whenever change, i.e. evolution happens. Adding
evolution capabilities to data pipelines and thereby re-
ducing maintenance cost and human involvement could
be a big contribution for scientists and practitioners alike.
The current work takes the first step in this direction by
collecting requirements needed for such a system and
by envisioning a data pipeline framework which fulfills
these requirements.

The following sections are structured as follows. Sec-
tion 2 describes the general concepts and challenges of
evolution in data pipelines. Important terminology is
defined and related work is shown in this section as
well. In Section 3 a pipeline framework with evolution

34th Workshop on Basics of Database Systems, June 07-09, 2023
@] kevin kramer@fernuni-hagen.de (K. Kramer)

[ https://www.fernuni-hagen.de/dbis/team/kevin.kramer.shtml
(K. Kramer)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
- Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

capabilities is envisioned and discussed. A conceptual
requirements model, which focuses on these evolution
capabilities, is presented in Section 4. Finally, the last sec-
tion concludes the paper and outlines a roadmap for the
community towards a pipeline framework with evolution
capabilities.

2. Evolution in Data Pipelines

This section provides the basis for the current work by
defining important concepts as well as presenting related
work. Firstly, data pipelines and their components are
introduced. Secondly, data pipeline frameworks includ-
ing their benefits are showcased. Finally, evolution in the
context of data pipelines is defined.

2.1. Data Pipelines

Data pipelines are used for a plethora of applications and
domains such as bioinformatics [2, 3], manufacturing [4]
and cybersecurity [5]. Broadly speaking, a data pipeline
consists of three components: data source(s), operator(s)
and data sink(s). Figure 1 (a) shows such a basic pipeline.

Biswas et al. empirically studied the components and
stages of 71 data science (DS) pipelines [6]. Their find-
ings suggest that DS pipelines consist of a pre-processing
phase, a model building phase and a post-processing phase.
They further extracted tasks and sub-tasks associated
with these phases. Subtasks are atomic operators in the
context of a pipeline. The pre-processing phase consists
of the tasks data acquisition, data preparation and storage
which represent the typical components of data engi-
neering and also includes the data source(s). The model
building phase is comprised of the tasks feature engineer-
ing, modeling, training, evaluation as well as prediction.
These tasks correspond to basic machine learning (ML)
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Figure 1: (a) A basic data processing pipeline consisting of a data source, operators and a data sink. (b) Self-awareness: the
system perceives a disruption at the data source level. This could be the structural or semantic change of incoming data. (c)
Self-adaption: the system automatically adapts to the perceived disruption by swapping the first operator for a different one.

and data mining (DM) functions. The tasks included
in the post-processing layer are interpretation, commu-
nication and deployment as well as all data sinks. The
empirical results show that the pre-processing and the
model building phases appeared in 96% of examined DS
pipelines, the post-processing phase only appeared in
52% of pipelines.

Pipelines can be linear, i.e. one data source, a chain
of operators and finally one data sink. Psallidas et al.
empirically studied 8M Jupyter notebooks' from GitHub’
[7]. Their results which were produced by mining and
analyzing the abstract syntax trees of all notebooks sug-
gest that 80% of the pipelines are linear. The structure of
pipelines can be interpreted as a directed acyclic graph
(DAG), allowing for pipelines, which can include several
data sources and sinks as well as branching operators, i.e.
operators which have more than one input or output. A
widespread example of such non-linear data processing
are extract transform load (ETL). They are used to extract
data from multiple heterogeneous sources, transform
them to use a common schema and then load them into a
data sink such as a data warehouse (which may become a
data source itself in the following steps) [8]. Even though
pipelines can be created using only functions and mod-
ules by chaining their inputs and outputs together [7],
pipeline frameworks allow users to generate, maintain
and administrate complex pipelines.

'https://www.jupyter.org/
Zhttps://www.github.com/

2.2. Pipeline Frameworks

The number of existing pipeline frameworks is over-
whelming. A popular collection of pipeline tools at
GitHub® includes 122 pipeline frameworks. At the same
time there is almost no scientific attention on the ab-
stract concepts of these systems. Some conceptual work
was made by Maymounkov [9]. The author proposes
an important distinction in order to categorize pipeline
frameworks. He divides frameworks into task-driven
and data-driven. Task-driven frameworks are agnostic
about actual data and operations that occur during a
pipeline run. Their focus lies on managing inter- and
intra-pipeline dependencies and scheduling large num-
bers of pipelines in parallel. Popular proponents of this
category are Luigi' and Apache Airflow’. Data-driven
pipelines are — to a varying degree — aware of the data
they process and the included operations. These frame-
works put a focus on data (and operator) lineage also
called provenance, i.e. they allow the user to retrace the
history of a data artifact by saving and curating metadata
on all steps of the artifact producing pipeline. A popu-
lar data-driven framework which logs various metadata
during pipeline runs is Dagster’. Some frameworks in
this category enable data provenance by using a version
control system similar to Git’. A prominent example of

Shttps://www.github.com/pditommaso/awesome-pipeline
“https://www.github.com/spotify/luigi
Shttps://www.airflow.apache.org/
®https://www.dagster.io/

"https://www.git-scm.com/



this is Pachyderm®.

Comparing pipeline frameworks is made difficult by a
number of factors: the sheer amount of different frame-
works, the lack of a theoretical basis for analysis, the over-
lapping functionality and the differing ways to achieve
the same goal within two frameworks. A thorough search
of related work and literature focusing on such compar-
ison, only revealed one paper [10]. Even though the
analysis was geared towards a specific system and its
requirements, the general results and especially the com-
parison criteria are a helpful first step towards distin-
guishing pipeline frameworks. Some of these criteria and
their possible values include:

» Type: business, science, big data
« Model: script-based, event-based, adaptive,
declarative and procedural
« Separation of concerns: asks whether or not
high-level pipeline definitions can be separated
from low-level data and operator implementa-
tions
« Language: general purpose language (GPL), do-
main specific language (DSL)
+ Pipeline programming: text-based, graphical,
visual
» Reusability: asks whether or not a framework
provides tools for reusing existing pipeline def-
initions as well as individual components of a
previously defined pipeline
+ Containerization: asks if pipeline components,
whole pipelines and the pipeline framework itself
can be deployed in a container
» Monitoring: asks whether or not the framework
allows for runtime observation of the system or
if it is granting logging capabilities
Some of these results are referenced in Section 3. In Sec-
tion 4 these basic criteria are extended with a special
focus on evolution capabilities. The particularities result-
ing from evolution will be presented in more detail in the
next subsection.

2.3. Pipeline Evolution

Evolution means change over time. In the realm of com-
puter science change can mean a lot of different things.
The emergence and widespread adoption of a new data
format (such as JSON’) or programming model (such as
MapReduce [11]) are examples of this. This type of evo-
lution is often gradual and influenced by many different
factors. In the context of data pipelines and correspond-
ing frameworks evolution can happen over different time
frames, ranging from gradual to sudden. The main evolu-
tion factors are so-called disruptors, which can affect all

Shttps://www.pachyderm.com/
“https://www.json.org

components and their interactions with each other. The
changes triggered by disruptors are diverse, but can be
broadly categorized into data, operator and environment
disruptors.

The structure and semantics of data might change, af-
fecting data sources and sinks as well as data artifacts
created within the pipeline, e.g. interim results. Struc-
tural changes in data might occur over time due to altered
data producers or operators. Semantic changes in data
can emerge from technical, legislative but also societal
reasons.

Operator functionality might also experience evolu-
tion, e.g after a software update, resulting in different
APIs or a changed set of available (hyper)parameters.
Another form of change in this context is choosing a
different operator for a specific task which accepts the
same input as the old one but produces a different output,
e.g. a different data structure. This leads to the need to
adapt the pipeline to fit this new operator.

Also, the environment in which the pipeline is run
can change over time. For example, the hardware could
change resulting in more processing power or more clus-
ter nodes becoming available. Adapting to such change
by increasing the number of pipelines running in par-
allel or utilizing bigger batch sizes in order to increase
efficiency could be possible examples.

3. Pipeline Framework with
Evolution Capabilities

In this section a pipeline framework with evolution ca-
pabilities is envisioned and discussed. Figure 2, based
on a figure from [12], shows a graphical representation
of the proposed framework. The outside of the figure is
made up of the environment frame including goals and
contracts as well as metadata and statistics. These ele-
ments represent the available resources, user objectives
and metadata, which the system gathered, stored and
aggregated throughout its lifecycle. Within this frame
there are essentially five columns. They represent (from
left to right) data sources, operators and data sinks. The
arrows connect the individual components and show two
pipelines, each consisting of a data source, three opera-
tors and a data sink. Evolutionary change can happen
at several points during a pipeline’s lifecycle. In Fig-
ure 2 these disruption points are shown as red flashes.
Structure and semantics of data might change at the data
sources as well as within the pipeline. Evolution can also
affect the operators and the environment in which the
pipelines are run. In any case, an ideal pipeline frame-
work could automatically adapt to these changes.
Concerning adaptability, an important distinction
needs to be made. Generally speaking, it is possible to
build pipelines in existing frameworks, that are very flex-
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Figure 2: Pipeline framework and its components. Evolution can happen in the form of structural and semantic changes to
the data during loading (1) and through operator processing (2) as well as to operators (3), e.g. after a software update. The
environment, i.e. hardware, scaling, etc., might also change over time (4). Based on a figure from [12].

ible. One class of systems, which are very flexible are
adaptive workflows, first presented by van der Aalst et al..
Besides being mainly task-driven, these systems adapt
themselves based on strict, predefined rules. An example
of such a system is AdaptFlow presented in [14]. Given a
treatment plan in the medical context, AdaptFlow can no-
tice logical errors and choose a different path in the prede-
fined workflow. This flexibility is completely dependent
on and bounded by the treatment workflow. Generally
speaking, the space of possible alterations, given such
a flexible system, is significantly smaller than the space
envisioned in the present work. This stems from the fact
that a pipeline framework with evolution capabilities dy-
namically creates and alters this search space, in order to
find an optimal solution, at different times during the sys-
tem’s lifecycle. This demonstrates that flexibility is not
the same as adaptability. It is also possible to build meta
pipelines especially for monitoring changes as well as
adapting to these changes. Even though this is currently
the most practical solution for achieving evolution capa-
bilities in existing frameworks, this approach does not
represent real evolution capabilities as they were defined
in the previous sections. In any case, before adapting to
evolution, the underlying changes need to be noticed and
recognized.

3.1. Self-awareness

The first step in dealing with evolution is to be aware of
change. Figure 1 (b) shows this step in dealing with evo-
lution. Data-driven frameworks are usually more aware
of change than task-driven ones since they provide more

monitoring capabilities and allow for concepts such as
reproducibility and provenance which are closely related
to evolution. A tool for inspecting pipelines which runs
on existing Python code is mlinspect [15, 16]. It extracts
the DAG structure of a pipeline and helps the user to
identify problems and bugs. For example it can help to
identify a skewed data distribution which would lead to
unfair [17] results. ArgusEyes [18] is a tool for inspecting
classification pipelines which builds upon mlinspect. It
enables the user to check whether best practices are ap-
plied while also providing various metadata to analyze
pipelines. Even though these tools are not intended to
track the evolution of pipelines and their components,
but rather focus on helping practitioners with a specific
issue, the underlying architecture can serve as useful
guidance for the development of a pipeline framework
with evolution capabilities. Another important aspect
is to track data changes across pipeline steps. The au-
thors of [19] present three measuring approaches that
are utilized in order to deal with bias.

Monitoring capabilities, gathering and storing meta-
data as well as calculating and providing statistics on
these findings are critical functionalities towards evolu-
tion capabilities in pipeline frameworks. They are neces-
sary in all dimensions and are the basis for self-awareness.
Tools like mlinspect and ArgusEyes, but also existing
data-driven frameworks like Dagster can be a starting
point towards achieving such functionality. Perceiving
change in operator results or contracts leading to the
automatic swapping or parameter change is also funda-
mentally important. One project that can be of help in
this regard is IBM Lale [20] which automatically creates



optimal pipelines based on scikit-learn'’ functions. Once
the system is aware of change, it needs to adapt to the
new circumstances.

3.2. Self-adaption

Automatic acting upon change can only be done with
respect to a goal. This goal could be as simple as ensuring
functionality and as complex as automatically optimiz-
ing the performance and accuracy of several big data
pipelines running in parallel given certain hardware. Fig-
ure 1 (c) shows the adaption step, after a disruption has
been perceived by the self-awareness capabilities. In this
context it is decisive to formulate a goal including a fit-
ting representation, which the pipeline framework can
use to evaluate decisions. The dimensions for pipeline
and environment shown in the last section both contain
the evolution requirement to provide an interface for
goals. This reveals a potential conflict: A pipeline with
the goal to achieve the best possible accuracy for a ML
task might want to simulate a lot of different pipelines
to find the best one and to achieve this goal. At the same
time simulations and tests might cost a lot of computa-
tional resources, which could stand in contrast to the
environment dimension’s goal to provide a certain per-
formance to all pipelines. A pipeline framework with
evolution capabilities needs to have dynamic functional-
ity to deal with these kinds of conflicts.

The vision of self-adapting systems is not unique to
the present work. The authors of [12] present four gener-
ations in data engineering for data science ranging from
simple data pre-processing to fully automated data cura-
tion. In [21] the authors envision a framework for multi-
model databases, which is self-adapting with regard to
design and maintenance. Similar to the insight gained
from tools like mlinspect and ArgusEyes in the context
of evolution awareness, other self-adaptive systems can
help to understand the underlying components and their
interplay. For example Hillenbrand et al. propose a sys-
tem which automatically chooses an optimal data migra-
tion strategy given some constraints like service-level
agreements [22]. Pachyderm which runs natively in Ku-
bernetes'' has a built-in system for distributed computing
/ scaling, which is very simple and should be considered
in the context of the environment dimension. The empiri-
cal results of [10] showed a complete lack of a simulation
environment in all studied frameworks. Simulation and
the use of synthetic data [23] are important components,
which need to be incorporated especially for the pipeline
and environment dimensions since their self-adaption
strategies need a search space to optimize towards a goal.

Ohttps://www.scikit-learn.org/stable/
https://kubernetes.io/

4. Conceptual Requirements
Model

As described in the previous sections, there is no frame-
work with comprehensive evolution capabilities yet. This
emphasizes the need for a requirements model, encom-
passing important components and their interplay as
well as system functionalities. The model presented in
this section is conceptual, i.e. it was not derived through
a structured method from the field of requirements engi-
neering [24]. It rather evolved from technical talks with
experienced colleagues and a rough analysis and com-
parison of existing pipeline frameworks. It can serve as
the inception step for a structured requirements gather-
ing process and furthermore helps with the testing of
existing frameworks for their evolution capabilities.
The requirements are structured into two categories,
self-awareness and self-adaption as well as four dimen-
sions.
« Data: Data sources and sinks, structure and se-
mantics of data
« Operator: Modules and functions and their re-
spective inputs and outputs
+ Pipeline: Creation and
pipelines
« Environment: Available hardware and schedul-
ing, scaling and orchestration of pipelines
Table 1 presents an overview of the requirements. The
following sections describe the requirements listed in
Table 1 in detail.

administration of

4.1. Self-awareness Requirements

Self-awareness means being aware of change. This
change is always relative with respect to some previ-
ous state, i.e. in order to be self-aware, a system needs to
store at least one previous state for comparison with the
current state. Therefore, collecting and storing metadata
over all dimensions is an integral requirement for a self-
aware pipeline framework. Even though comparing two
system states is sufficient to notice change, in many cases
it would be beneficial to have a history of system states.
Creating a versioned history of metadata allows for more
complex concepts and techniques to be applied, e.g. ex-
tracting (meta)data distributions or using window-based
anomaly detection to notice change. Versioning of meta-
data, component artifacts and configuration files would
enable the self-aware system to notice different forms of
change and distinguish them. For example it could differ-
entiate between an abrupt change to the interface of an
operator after a software update and the gradual decrease
of data quality, based on the wrong composition of pre-
processing operators. Collecting and storing such data
is important, but so is managing and curating it, which



Table 1

Conceptual requirements and their corresponding dimensions, categorized into self-awareness and self-adaption

Category Requirement Dimension
Collecting and storing metadata all
Versioning of metadata all
Versioning of component artifacts all
Versioning of configuration files all
Providing provenance capabilities all
Analyzing metadata and creating statistics all

Self-awareness e
Noticing structural changes data
Noticing semantic changes data
Noticing changes to contracts,APIs and interfaces operator

Noticing changes to available computing resources
Monitoring processing results and performance
Providing an interface for goal definition

environment
operator, pipeline
operator, pipeline, environment

Initiating an adaption, based on the violation of a goal

Automatically swapping operators
Self-adaption

Automatically changing pipeline structure and components
Automatically optimizing resource distribution and scheduling
Providing a simulation space to test potential alteration

operator, pipeline, environment
operator, pipeline

pipeline

environment

pipeline, environment

leads to the need for provenance capabilities over all di-
mensions. Also providing tools to analyze metadata, for
example to aggregate historic data into statistical values,
is an important requirement. Aggregated data enables a
different perspective of change.

When looking at the data dimension, the two funda-
mental requirements a pipeline framework with evolu-
tion capabilities has to fulfill are noticing changes to the
structure of data and noticing changes to the semantics of
data. These disruptors almost always trigger an adaption
and therefore, being aware and dealing with them, is of
utmost importance. The same can be said about the oper-
ator dimension. A changing operator interface will most
certainly result in an erroneous pipeline. Hence, noticing
such change is a critical requirement. Changes to the en-
vironment do not necessarily result in non-functioning
pipelines, but rather influence the performance. Still,
noticing changes to the environment, e.g. available hard-
ware, is important to achieve framework performance
goals, such as optimal utilization of available resources.
A similar approach needs to be taken for operator and
pipeline goals. Processing results and performance of
individual operators as well as pipelines need to be mon-
itored, in order to compare these results to predefined
goals. Diverse metrics for goal definition can be imag-
ined, ranging from speed and throughput performance to
data quality and model accuracy. This leads to framework
requiring an interface for goal definition. This interface
allows the user to specify objectives with respect to indi-
vidual operators, pipelines and the whole framework. At
the same time, this goal definition is used for comparison
with the current as well as historic states of the system,
to notice change and possibly initiate an adaption.

4.2. Self-adaption Requirements

Once the system is aware of a significant change, it trig-
gers an adaption. Based on the dimension in which the
adaption should occur, i.e. operator, pipeline or environ-
ment, the prerequisites for all possible adaption operation
are checked. This first step towards an adaption is an
important requirement for a pipeline framework with
evolution capabilities, since it creates a search space for
possible adjustments. The operations, which make up
these adjustments, represent crucial requirements as well.
They include the automatic swapping of an operator, the
automatic change of pipeline structure and/or compo-
nents, as well as the automatic optimization of resource
distribution and pipeline scheduling. The search space
of all possible operations is transformed into a simula-
tion space, in which possible alterations are tested. This
space connects the user’s goal definitions with the self-
awareness metadata, while at the same time providing
simulation and optimization capabilities, in order to find
an optimal adaption.

5. Conclusion and Future Work

The present work defined and showcased data pipelines
and their corresponding frameworks. Evolution in the
context of these systems was introduced and a conceptual
requirements model was proposed, comprised of all com-
ponents of such systems, categorized by self-awareness
and self-adaption and structured into four dimensions. By
envisioning a system which fulfills these requirements, a
first step was made towards a framework, which would
need less maintenance based on its self-awareness and



self-adaption, i.e. evolution capabilities. This type of
framework could be a substantial contribution for scien-
tists and practitioners alike.

The paper is concluded with a set of steps that need
to be taken by the community towards achieving evolu-
tion capabilities in data pipelines. First of all, a proper
requirements model using concepts and methods of re-
quirements engineering must be constructed. This must
include a structured requirements gathering process com-
prised of talking to stakeholders, who would benefit from
the proposed system, as well as an in-depth analysis
of existing concepts and techniques with regard to self-
awareness and self-adaption. As a result, this step would
produce a system specification encompassing require-
ments, including non-functional ones, use-cases and a
basic software architecture, as well as formal definitions
of new terms. In the next step, these results need to be
compared to existing frameworks and tools, in order to
find working solutions, but also gaps. All dimensions
must be thoroughly analyzed and the system specifica-
tion must be iteratively adjusted. During this phase soft-
ware engineering and architecture principles, which sup-
port evolution capabilities must be derived from existing
systems and be incorporated into the specification. The
secondary goal of this step is to either find a framework,
which provides a good basis for evolution capabilities
— at least with respect to a certain dimension —, or to
discover the need to conceptualize and implement the
missing components from scratch. In any case, the next
step would be the creation of a prototype. As a final step,
this prototype must be evaluated and validated, given
the system specification.
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