
Towards a Future of Fully Self-Optimizing Query Engines
Paul Blockhaus1, Gabriel Campero Durand1, David Broneske2 and Gunter Saake1

1Otto-von-Guericke University, Magdeburg, Germany
2German Centre for Higher Education Research and Science Studies, Hannover, Germany

Abstract
With the ever-increasing heterogeneity of hardware, the database community is tasked with adapting to the new reality of
diverse ecosystems. The traditional workflow of hand-tuning query engine implementations to the underlying hardware
might become untenable for an ever-growing variety of hardware with different performance characteristics. Systems
like Micro-Adaptivity in Vectorwise or HAWK have been studied as adaptive solutions, but their adoption remains limited.
Envisioning a solution simplified for adoption, we propose a practical take on adaptive reprogramming using the domain-
specific language Voila and the MLIR compiler framework. We identify five main challenges in the area, and demonstrate
how we tackle the first challenges. To show the feasibility of our approach, we include a brief evaluation of its performance
on TPC-H; comparing 120 generated variants from a small subspace of potential optimizations.

Keywords
Adaptive Reprogramming, Micro-Adaptivity, Query Engines, Compiled Query Execution, MLIR, Voila

1. Introduction
Emerging trends in hardware development show a
paradigm shift away from a single instruction set archi-
tecture (x86) towards a more heterogeneous ecosystem
(e.g., RISC-V, ARM). While the complete consequences
for the performance and design of database systems in
this new era continue to be fleshed out [1], it is certain
that engineers will continue to be tasked with adapt-
ing storage and query engines to new hardware. This
trend has already been visible in the last few years with
database systems adopting heterogeneous hardware [2]
and finding benefits by exploiting new processing capa-
bilities such as SIMD, non-volatile RAM, among others.
This increased heterogeneity opens-up entire new sets of
improvements for query engines. In this circumstance,
the choice of a physical algorithm is likely to increasingly
hinge less on the characteristics of queries, but rather on
those of the underlying hardware. Broneske et al., among
others, showed that with the increasing heterogeneity,
not only the choice of algorithm and operator placement
matters for query processing, but the implementation
variant of the algorithms is crucial[3]. In numerous in-
stances, promising variants are based only on so-called
micro-optimizations commonly used by developers, as
well as compilers, to optimize high-performance algo-
rithms (e.g., branch predication, loop unrolling).
Over the last decade, research has cemented that these
micro-optimizations have a considerable influence on

34th Workshop on Basics of Database Systems, June 07–09, 2023,
Kloster Hirsau, DE
Envelope-Open blockhau@ovgu.de (P. Blockhaus); campero@ovgu.de
(G. C. Durand); broneske@dzhw.eu (D. Broneske); saake@ovgu.de
(G. Saake)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

query performance. Hence, several solutions have been
proposed to identify and use the best combinations
of micro-optimizations to reach peak-performance in
hardware-sensitive algorithms over specific heteroge-
neous hardware [4, 5]. However, to the best of our
knowledge, none of these approaches has led to a fully
adaptive reprogramming system that can automatically
generate, choose and maintain the best query execu-
tion plan and strategy, applying micro-optimizations to
the query on the fly before executing it. Consequently,
the goal of a flexible and highly adaptive approach to
peak-performance and to relieve the burden for ongoing
hardware-aware optimization and specialization, seems
to arguably remain only partly realized. To help achieve
this goal of adaptive reprogramming, we outline a vi-
sion for a fully adaptive, self-optimizing hardware-tuned
query engine. We identify five main challenges that need
to be addressed on the way and integrate the compo-
nents into a single system. In order to have a sustainable
platform for our vision, we choose to link upfront some
solutions in compiler development. This enables us to
directly benefit from the early adoption of new features
into compilers and unifies the infrastructure for better
maintenance and efficient development. To demonstrate
a first step towards realizing our vision, we develop a
prototypical open-source approach1 that allows for adap-
tivity in the entire query execution through the use of a
domain-specific language (DSL).
Our implementation is based on Voila [6], a DSL for query
execution able to model various strategies. For our work,
we implemented a new compilation backend for Voilas’s
execution. The backend is based on the MLIR framework,
which enabled us to implement micro-optimizations of
entire query plans at a per-operator level. To show the

1https://github.com/SuperFoo42/voila_mlir/tree/v0.1

mailto:blockhau@ovgu.de
mailto:campero@ovgu.de
mailto:broneske@dzhw.eu
mailto:saake@ovgu.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/SuperFoo42/voila_mlir/tree/v0.1

potential of our approach, in this work we empirically
evaluate the performance of the DSL and its variants on
an adapted subset of the TPC-H benchmark.
The remainder of the paper is structured as follows: First,
we introduce the tools upon which our prototype is built,
with an overview of previous work. Next, we introduce
the five main challenges we identified for a fully adap-
tive query engine. We follow with an overview of the
architecture of our prototype, that tackles the first two
challenges. Finally, we present an early empirical evalua-
tion.

2. Background & Related Work
In this section, we discuss the MLIR framework and the
Voila DSL, which are the basis for our prototype; enabling
efficient and adaptive generation of operator variants.
Afterward, we give a brief overview of previous work.

2.1. MLIR
MLIR [7] is a compiler framework relying on LLVM [8] to
quickly build DSLs. MLIR offers a generic intermediate
representation providing a unified syntax and support for
commonly needed functionalities of DSL compilers, such
as type inference, lowering to executable code, interfaces
for common code transformations, and many more. The
two core components of MLIR are dialects and transfor-
mations, where dialects are different DSLs, tailored to
specific use cases, e.g., the scf -dialect represents struc-
tured control flow elements, the memref -dialect repre-
sents memory references and access, and the gpu-dialect
allows expressing instructions executed by GPUs, as well
as the communication between CPU and GPU.
The structuring of MLIR in dialects and the possibility of
mixing multiple dialects into this single representation
allows for an efficient interoperation between dialects
and simplifies their implementation. Other than dialects,
transformations are the central component ofMLIR. They
convert between different dialects, while also support-
ing transformation patterns within a dialect, for example
an optimization or canonicalization. As dialects are de-
signed to represent problems in their domain efficiently,
transformations can also be handled efficiently. This
leads to better optimization times, and simpler rules, com-
pared to general-purpose compilers such as LLVM. Addi-
tionally, transformations can be used in a plug-and-play
fashion by conversion to the particular dialect. These
concepts show, to the best of our knowledge, a great
potential for a compiled query engine capable to utilize
heterogeneous hardware and are unique for compiler
frameworks.

2.2. Voila
Voila [6] is a DSL designed for efficient query execution,
independent of the execution paradigm. To this end,
the language is decoupled from the execution backend,
which can flexibly run Voila programs in a vectorized or
compiled fashion. To achieve this independence, Voila is
designed with vector data types as first class citizens. The
size of the vector determines the execution style, where
a size of ∞ corresponds to operator-at-a-time execution
and a size of 1 being a tuple-at-a-time execution. To
have a language that allows this degree of flexibility, the
granularity of the operations is set to execute on entire
vectors, but the instructions are kept general purpose
to be able to write different algorithms without a large
re-implementation effort. The resulting granularity is
somewhere between relational algebra operators, e.g.,
MAL [9], and virtual CPU instructions, e.g., LLVM IR.

2.3. Previous Approaches
In recent years, several approaches for adaptivity in
database query execution have been proposed. One of
the first approaches achieved micro-adaptivity in Vec-
torwise [4] through operator variants that were pre-
compiled in libraries and could be replaced during run-
time by dynamic library loading.
A new approach on micro-adaptivity was proposed with
Excalibur. Excalibur is a virtual machine for adaptive
query execution [10]. It utilizes Voila to generate queries
that are executed in a vectorized fashion and replaces
parts of the execution pipeline with compiled variants to
search for an optimal execution plan variant.
The HAWK framework [5] used the C preprocessor and
OpenCL to achieve adaptivity of the query algorithms on
heterogeneous hardware. Looking beyond the variant
generation, both solutions also considered the selection
of the optimal variant from the variant pool, using ma-
chine learning. This was necessary as the spanned search
space is extremely large, and the performance of each on
a given hardware-query combination is inherently hard
to predict. While the micro-adaptivity approach used an
online multi-armed bandit to find the optimal variants,
HAWK used offline-learning with a heuristic to test in
the optimization space for the most efficient variants.
Micro-adaptivity and HAWK suffer from a rather re-
stricted set of adaptivity due to pre-compiled variants
using a template mechanism on top of a high-level lan-
guage. In addition, HAWK doesn’t provide any run-time
adaptivity and has to be trained for a workload in ad-
vance. Excalibur is able to overcome the restrictions of
high-level language templating, but still suffers from the
problem of having to implement each variant transfor-
mation.

3. Challenges for Adaptive Query
Execution Frameworks

Challenge 1 – Granularity of Adaptivity
Finding the right granularity at which adaptive repro-
gramming is introduced is a key factor for the efficiency
in several aspects. The granularity determines the com-
plexity of the system, as well as the resulting possibilities
to reach peak-performance. A coarse granularity at the
level of, e.g., pipeline programs will only allow for a
global level of flexibility, such as optimizing compiler
flags, and their influence will overall not lead to large
benefits compared to the choice of algorithms and access
paths used for the query. Though compiler flags could
improve usage of hardware capabilities, the approach
is still limited in optimizing queries individually with
regard to the query characteristics.
In contrast, fine-grained adaptivity incurs additional over-
head during variant generation, and high complexity on
the system for optimization due to the large variant space.
For example, introducing reprogramming into HyPer’s
operators [11] would lead to a huge variant space, as the
operators can be written in LLVM IR, but it also adds the
complexity of an entire compiler that has to be able to
exploit this variability, entirely disregarding the complex-
ity of implementing algorithms directly in LLVM IR. The
use of mainstream compilers for this level of variability is
rather limited, as current compilers only concentrate on
generating the best code for the common case, or work
with profiles to optimize for a pre-profiled use-case [12].
To our knowledge, there is no approach that instructs
the compiler to transform LLVM IR or similar low-level
intermediate languages to optimize the code at such fine
granularity.
Therefore, current approaches choose the granularity
of pipeline-operators for variability, as a compromise
between complexity and variability. These operators
are usually implemented in a high-level general-purpose
programming language, which limits the degree of vari-
ability through its language constructs and mapping to
hardware instructions. In the presence of heterogeneous
systems, the language in which the operators are im-
plemented has to support all target platforms, which
either leads to using a hardware-oblivious language, e.g.,
OpenCL, or a hardware-sensitive alternative, mixing mul-
tiple languages. Both approaches come with their own
disadvantages, they might not be performance portable,
or add a lot of complexity through re-implementation of
algorithms to optimize for hardware characteristics.
In order to overcome the above-mentioned problems of
the individual approaches, Broneske et al. proposed the
use of DSLs [3]. While this does not directly solve the
problem of choosing the right granularity, it allows de-
signing the DSL to fit an arbitrary granularity, or multiple

levels of granularity with different language constructs,
as required. Additionally, the DSL can be designed to
efficiently support various types of hardware efficiently
and even handle work distribution scenarios [13]. Un-
fortunately, to our knowledge, there are no established
approaches that utilize a DSL towards adaptive repro-
gramming in data management.

Challenge 2 – Adaptivity Mechanism
Closely linked to the choice of granularity is the choice
of the adaptivity mechanism. This refers to the com-
ponent responsible for creating variants on the chosen
granularity, and therefore also (partially) defining the
variant space available. This component will depend on
the granularity and query execution paradigm. Current
approaches introduce adaptivity through an additional
abstraction layer, producing the variants in a preprocess-
ing step before compilation, i.e., using the C preprocessor
for variant templates. These variants are then used ei-
ther directly in a compiled execution engine [5] or loaded
dynamically from libraries [4].
While this approach can be easily implemented, and is
shown to be very effective, it has some drawbacks, such
as limited adaptivity according to the expressiveness of
the underlying language and specification of the pre-
processor. Additionally, using a high-level language for
adaptivity does not guarantee that the optimizations are
actually applied because state-of-the-art compilers ap-
ply their own heuristics on the code that may undo the
applied optimizations or optimize differently. We argue
that a direct integration of the adaptivity mechanism into
the compiler will help to overcome these problems, as
the compilers already support many micro-optimizations
by default; they just have to be applied. This eliminates
redundancy in the design and also gives full control over
the compilation process, which also allows restricting the
optimizations or heuristics that the compiler uses, to not
interfere with manually adapted code. Another advan-
tage of this approach is that it combines nicely with our
proposed solution for the first challenge, as modifications
of the compiler to support a DSL can already require the
design of a compilation pipeline. In our prototype, we
are able to utilize the different granularities of different
DSLs that MLIR offers to adaptively optimize the query
in MLIR’s own compilation pipeline.

Challenge 3 – Learning Variants
With the first two challenges, we described the problem
of variability, but without a good variant selection mech-
anism, such variability might be essentially useless. The
main problem for finding the best variants is the exten-
sive search space that increases exponentially with every
added optimization. The state-of-the-art approaches, we

described in subsection 2.3, leverage machine learning
techniques to learn and predict the best variants for a
certain workload. The HAWK-framework uses an offline-
learning approach that is fed with example queries and,
in this way, learns the best flavors for the underlying
hardware [5]. To reduce the learning time, additional
heuristics are used to prune the exploration space. This
approach focuses solely on optimization for a mostly
static workload and best working parameters for optimal
hardware utilization. Another approach used by micro-
adaptivity is an online-learning approach that can also
adapt to changing workloads [4]. This is achieved by for-
mulating the variant selection as a multi-armed bandit
learning problem. This continuously relearning system
is also efficiently usable without previous learning.
We argue that an online-learning approach is, in general,
preferable over offline learning, as it is designed to adapt
to changes in the data management workloads by itself,
whereas offline learning would need re-training over new
representative workloads, which nowadays can change
quickly and therefore is not easily predictable. A solu-
tion combining offline-learning to establish the starting
models for online-learning might combine the best of
both approaches.
We envision to not only use models to learn the best
optimizations that can be used to instruct the compiler
to apply certain optimizations on chosen places, but also
to generate parameters for each optimization, and to
guide the compiler regarding the number of optimiza-
tion passes for applying the optimizations. Finally, we
envision that the selected solution should integrate well
with an MLOps framework, considering the lifecycle,
evaluation, and maintenance of the models used.

Challenge 4 – Integration Into High-Level
Optimization
To take a step from a pure query execution engine to-
wards a more widely usable database engine, an adap-
tive reprogramming framework must be compatible with
other high-level optimizations such as algebraic optimiza-
tion, index and algorithm selection. To achieve this goal,
one of two challenges has to be accomplished: Either the
reprogramming framework needs to be integrated into an
existing DBMS, or the missing components are integrated
into the framework. Neither of these two solutions has
been successfully applied yet. To the best of our knowl-
edge, there only exist approaches that integrate parts
of traditional optimizations into the adaptivity pipeline.
The HAWK-framework, for instance, has limited support
for hash table algorithm selection besides the operator-
level variant granularity. Furthermore, Jungmair et al.
showed a first example of how to integrate algebraic op-
timization successfully into MLIR, from which on further
high-level optimizations can be introduced [14]. Even

though both versions are possible, we plan to adapt the
modeling of relational algebra in MLIR as it is a more flex-
ible approach; with the added possibility of combining it
with the learning mechanism mentioned before.

Challenge 5 – Adaptivity for OLTP
Current approaches in code generation for data process-
ing focus heavily on OLAP queries, which is reasonable
due to their complexity and high latencies. This focus
neglects OLTP queries, which, we believe, might still
provide room for improvement through code generation,
with a focus on optimizing together sets of concurrent
queries or templates of them. We envision, at this stage,
that OLTP queries could be served in at least three main
ways. First, recent work has shown promising results
by tackling the challenge of learning an adaptive concur-
rency control mechanism for a mix of pre-defined query
templates at different contention scenarios [15]. We con-
sider that different mixes of these queries and the variable
concurrency control mechanism might be able to lever-
age a code generation framework for a higher flexibility
and adaptivity, in the search for high throughput. To
achieve this, we consider that multi-query optimization
might be necessary, opening the door for further kinds
of improvements, such as operator sharing. Secondly, we
consider that interpretation of MLIR for faster execution
without compile overhead, and a switch between inter-
pretation and compilation through coroutines could be
relevant for workload mixes that could be categorized
as HTAP. Finally, we argue that the flexibility of MLIR
allows for the study of a new dialect focusing on robust
processing over adjacent data versions (as used in MVCC
or in Delta Lakes), which might be able to provide a
competitive support for high-contention scenarios.

4. A Transformation-Based
Approach for Adaptivity

In the following, we present our prototype that seeks to
tackle, at this stage, the first two challenges described in
the previous section. We start with the architecture of
our approach (cf. Figure 1).
To have a more fine-grained granularity with a larger
variant space while only adding a rather small overhead,
we adapted Voila [6] as a DSL with sub-operator granu-
larity (Challenge 1), and the additional feature of being
agnostic to the query execution strategy. The design of
Voila also allows for simple adoption to be efficiently exe-
cuted on heterogeneous processors, as similar designs al-
ready demonstrated [16]. Instead of explicit predication,
we rely on a separate compilation pass to automatically
choose when to use predication and when to material-
ize selections, which allows for more flexibility in the

SQL Query

Voila
Hardware Oblivious Query Representation

MLIR
Adaptive Code Generation

LLVM
Target Dependent Code Generation

Query Results

JIT Execution
Query Execution on Heterogeneous

Hardware

	

Figure 1: High-level architectural schema of the framework

optimization while also simplifying the language.
Implementing those types of adaptivity directly into the
DSL has the great advantage that it makes the DSL adap-
tive by design (Challenge 2). In contrast to other ap-
proaches, there is no longer the need to provide an addi-
tional callback to pre-compiled algorithms or to change
the query plan. Instead, the query engine directly calls
the generated query code, which is adapted during JIT-
compilation by the supplied transformation and optimiza-
tion passes.
The DSL itself is built upon the MLIR and LLVM
frameworks, which enable simple definitions of micro-
optimizations as transformations. Some commonly used
transformations, such as loop unrolling, vectorization,
parallelization, etc., are already implemented and can be
used. Transformations in MLIR are applied in passes, and
additional filters even allow applying transformations
selectively on certain instructions, or supplying certain
parameters to the passes. In addition to the pre-existing
passes, we implemented a selection dematerialization
pass to compensate for the missing predication by re-
placing the materialized result of the selection with a
predicate, indicating the selected tuples, when possible.
The dematerialization pass uses a forward data flow anal-
ysis of selection results to decide whether to materialize
the result or keep the predication. Currently, we mate-
rialize the results any time, where pipeline breakers are
encountered, but the pass can be extended with further
options and more complex scenarios on when to replace
materialization with predication and vice versa.
As MLIR is built upon LLVM, it also comes with native
support for heterogeneous hardware. Hence, we are con-
fident that our DSL is able to adjust its behavior to fit pro-
cessing paradigms on heterogeneous hardware with only
minimal extensions. However, in the following w.l.o.g.,
we focus on the extensible CPU-only part. Therefore,
we use vectorization to utilize SIMD capabilities of mod-
ern CPUs, as well as multithreading with built-in LLVM
coroutines, or the OpenMP runtime.
In order to translate Voila to executable machine code, we
added a backend to Voila that translates Voila to a Voila-
MLIR dialect. From there on, we use the MLIR framework

and its dialects to introduce adaptivity into the code and
lower it to LLVM, which is then JIT-compiled and exe-
cuted.
The usual compilation pipeline of our framework looks
as follows, once Voila has been translated to Voila-MLIR,
which includes type resolution and transformation of
columns to the tensor data type, aggressive function inlin-
ing is performed to achieve redundant sub-query removal
through canonicalization and common sub-expression
elimination, as well as allowing for better optimizations
by eliminating function call boundaries.
Afterward, the dematerialization pass is performed and
the resulting plan is lowered to MLIR’s internal dialects,
either linalg, or affine. The linalg dialect describes
loops using the concept of iterators. Each linalg opera-
tion consists of a set of input tensors and generates a set
of output tensors. The body of linalg operations has to
be largely side effect free, and aside of regular reductions
doesn’t allow for data or control flow dependencies be-
tween the iterations. Therefore, we resort to the affine
dialect for operations that need broader constraints. The
affine dialect models range-based for loops and allows
direct memory manipulations, only constrained by the
loop induction variables.
Once, Voila-MLIR is translated to these high-level inter-
nal dialects of MLIR, we apply loop optimization passes
such as parallelization, tiling, unrolling and loop fusion.
Afterward, we continue lowering towards more lower-
level dialects such as the vector dialect that represents
virtual, hardware-independent vectors and instructions
that can directly be mapped to the hardware’s SIMD
capabilities. Other translations in this phase are low-
ering of parallel loops to the async dialect, which rep-
resents multi-threading through LLVM coroutines, or
to the openmp dialect. In this step, it is also possible to
transform parallel loops for execution on further copro-
cessors, such as GPU, e.g. by using the gpu dialect. This
dialect models the GPU execution model and also handles
communication between CPU and GPU. For a concrete
execution on GPU, the dialect can further be lowered to
SPIR-V or AMD and NVIDIA specific dialects.
In the next step, the low-level MLIR is lowered to LLVM
and finally compiled to executable byte code and then
the query can be executed.

5. Evaluation

5.1. Dataset & Modifications
To get an overview of the real-world behavior of our
framework, we use a subset of the TPC-H benchmark.
More precisely, we choose the queries Q1, Q3, Q6, Q9
and Q18 as a representative sample for typical OLAP
queries [17]. Since our framework does not yet support

Table 1
Benchmark machine specifications

Processor RAM SIMD

Machine 1 Intel Xeon E-2286M@2.4GHz 128GB AVX2
Machine 2 Intel Xeon Gold 6130@2.1GHz 346GB AVX-512
Machine 3 Intel Xeon E5-2630 v3@2.4GHz 1008GB AVX2

joins efficiently and has no support for string data types,
we modify the TPC-H dataset slightly to still be able to
run the queries.
We use order-preserving dictionary compression for
string columns and denormalize tables that need to be
joined in order to replace joins by selections that are
simpler to implement efficiently. We argue that the dic-
tionary compression has no significant impact on the re-
sults of our benchmarks, as strings in TPC-H are mostly
only used as payloads [18] and since we are already us-
ing column-oriented query processing, the strings would
commonly not be loaded at all for most of the time. The
only exception here is Q9, where a string pattern match-
ing takes place, which has to be translated in the case of
dictionary compression. We choose to work around the
matching by using a large IN-clause, checking for exis-
tence of each tuple using a hash table. For the replace-
ment of joins with simple selections on denormalized
tables, Li and Patel suggest that it has no large influ-
ence on the query performance and leads to comparable
results [19].

5.2. Setup
In order to get a first overview of the performance char-
acteristics of our experiments on different platforms, we
use three different machines listed in Table 1. All three
machines use Intel processors, but from different genera-
tions and with slightly different architectures and clock-
rates, which should already show varying results.
To keep performance differences limited to the hardware,
we created a unified build tool chain with all machines
using the same bootstrapped LLVM version 13.0.1 to
build the experiments. Additionally, we supplied the
following compiler flags for optimization: -O3 -flto
-march=native . Where -O3 instructs the compiler to
apply more aggressive, but also expensive (in terms of
compile-time) optimization of the code, -flto enables
link-time optimizations, such as de-virtualization of func-
tions and -march=native tells the compiler to enable in-
structions that are available for the architecture on which
the code is compiled. Such instructions are usually SSE4
and AVX, among others. While more advanced instruc-
tions increase the overall latency of our framework to
optimize and run code, this also makes the binary largely
not portable to other architectures. Overall, the optimiza-
tions only have an effect on the framework compile-time
of the query, but not on the query execution time, as

these flags are not applied to the query compiler. To get
more robust timing results, we disabled software-based
frequency scaling and ran each benchmark 100 times.
The reported times were averaged using the median.

5.3. Adaptivity Behavior
In order to get an overview of the effect of our optimiza-
tions on the runtime of the queries, we only generate a
subset of the variant space that we are able to generate.
To restrict the number of variants to a maintainable size,
we only create all configurations of the following five
major optimizations and configurations:

loop unrolling: copying the loop body multiple times
within the loop to reduce control-flow overhead
of the loop condition check

loop tiling: splitting the loop body into an inner and
outer loop, effectively creating a blocking of mem-
ory access to increase cache performance

selection dematerialization: replacing material-
izations of intermediate selection results by
bitvectors indicating selected tuples to reduce
memory usage and increase vectorization
capabilities

parallelization: splitting independent loop iterations
to multiple cores using LLVM coroutines or
OpenMP

vectorization: transform instructions in loop bodies to
SIMD counterparts for data-parallel execution

In addition, we used some minor, permanently enabled
optimizations such as CSE, inlining and buffer optimiza-
tion passes to obtain both better optimizable and opti-
mized code.
Furthermore, we restricted the configuration of these op-
timizations to a per-program level instead of generating
variants for each operation. With these prerequisites, we
generated 120 variants for each machine and show the
results of the pure execution times without compilation
as heatmaps in Figure 2. To keep the time for running the
configurations acceptable, we used the TPC-H dataset
with scale factor 1.
Each column of a heatmap represents a different vector-
size, while the rows describe combinations of unrolling,
tiling and selection dematerialization. The different par-
allelization techniques are divided by Figure 2a, Figure 2b
and Figure 2c.
Due to an outdated OpenMP runtime onMachine 3, there
are no heatmaps for OpenMP parallelization in this ma-
chine. Furthermore, combining vectorization together
with tiling for Q6 was problematic. The main reason

was that the generated code could not be compiled be-
cause parallel loops only allow reductions on scalar types
through atomic read-modify-write operations. However,
as the loop body was vectorized, the reduction would
have to be done on vectors, which is not supported. Due
to this limitation in MLIR, we decided to exclude variant
results with tiling altogether for Q6. The key observa-
tions from this experiment are:

1. All machines show similar trends regarding vari-
ants, but different configurations turn out to be
most efficient (e.g., unrolling vs. no unrolling for
Q6 or OpenMP vs. async).

2. Tiling has a mostly negative influence on the
query performance, with a speed-up ×1 to ×0.1
compared to no optimization.

3. For Q1 and Q6, selection dematerialization im-
proves the performance by a factor of up to ×10,
whereas Q3 and Q9 showed decreased perfor-
mance by as low as ×0.25.

4. Loop unrolling had only a moderate influence
when combined with vectorization for larger vec-
tor sizes.

5. Vectorization had slightly positive effects on the
runtime of Q6 (×2 speed-up), for the other queries
it had slightly negative effects.

Overall, these experiments show that our approach is
able to generate differently performing variants that can
be used to optimize the runtime of different queries de-
pending on the executing hardware and software char-
acteristics – even with only a small part of the possible
variant space explored. On the other hand, we also ob-
serve some unexpected behavior, such as the partially
low influence of vectorization and parallelization on the
runtime, especially visible for Q1, Q9, and Q18. After
inspection of the generated MLIR code, we saw that these
queries are often not transformed to parallel loops be-
cause the transformation pass of MLIR is too restrictive in
its side effect analysis and does not parallelize/vectorize
loop nests with non-affine branches instead of traversing
and analyzing their memory accesses recursively.

6. Conclusion & Future Work
In this paper, we presented our vision of the future of fully
adaptive database query execution engines and showed
that support of micro-optimizations in database query
engines can have a performance impact in the order of
magnitudes. At first, we identified the main challenges to
tackle in order to achieve a fully adaptive database engine
that, despite the clear advantage of such systems, still

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

1

Q1 Q3 Q6 Q9 Q18

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

2

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

3

(a) Variants performance for all machines without parallelization

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

1

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

2

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

3

(b) Variants performance for all machines with coroutines

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

1

1 2 4 8 16
Vector Size

none
sel

u
u + sel

t
t + sel

t + u
t + u + sel

M
ac

hi
ne

2

1 2 4 8 16
Vector Size

1 2 4 8 16
Vector Size

1 2 4 8 16
Vector Size

1 2 4 8 16
Vector Size

500 1000 200 400 20 40 1000 2000 500 15001000

(c) Variants performance for Machines 1 and 2 With OpenMP

Figure 2: Heatmaps showing the runtimes of the query vari-
ants with optimizations: tiling (t), unrolling (u), selection de-
materialization (sel)

does not exist today. We find that there are approaches
that tackle each of the challenges individually, but up to
now there exists no framework that takes everything into
account to achieve an entirely adaptive solution. There-

fore, we propose a simple and practical approach that
leverages the Voila DSL and the MLIR compiler frame-
work to introduce adaptivity into the query compilation
pipeline and, thus, we tackle the challenges of adaptivity
and granularity of the optimizations. Moreover, we high-
light further pathways to tackle the remaining challenges
in the context of our approach.
We briefly evaluated the functionality and performance
using a modified version of the TPC-H benchmark. We
showed that our approach is able to generate diverse
variants with different performance properties. While
we still found some issues and the prototype is at an early
stage, we are confident that when addressing the issues,
our approach will be able to outperform non-adaptive
systems.
Our immediate next step is the addition of support for
heterogeneous hardware, as well as improvement of the
prototype to be more competitive by overcoming the
identified problems. Additionally, we want to extend our
approach to support joins efficiently, as well as string
types. For the future, we plan to extend our prototype to
tackle all of our presented challenges, to become a fully
adaptive reprogramming, heterogeneous database sys-
tem that is able to achieve peak performance independent
of the supplied workload and hardware.

References
[1] T. Gubner, P. Boncz, Highlighting the performance

diversity of analytical queries using voila, in: Proc.
ADMS 2021, 2021.

[2] K. Dursun, C. Binnig, U. Cetintemel, R. Petrocelli,
SiliconDB: Rethinking DBMSs for Modern Hetero-
geneous Co-Processor Environments, in: Proc. Da-
mon 2017, ACM, 2017.

[3] D. Broneske, Adaptive Reprogramming for
Databases on Heterogeneous Processors, SIGMOD
2015 PhD Symposium, ACM, 2015, p. 51–55.

[4] B. Răducanu, P. Boncz, M. Zukowski, Micro Adap-
tivity in Vectorwise, in: Proc. SIGMOD 2013, ACM,
2013, p. 1231–1242.

[5] S. Breß, B. Köcher, H. Funke, S. Zeuch, T. Rabl,
V. Markl, Generating custom code for efficient
query execution on heterogeneous processors,
VLDB Journal 27 (2018) 797–822.

[6] T. Gubner, P. Boncz, Charting the Design Space of
Query Execution Using VOILA, Proc. VLDB Endow.
14 (2021) 1067–1079.

[7] C. Lattner, M. Amini, U. Bondhugula, A. Cohen,
A. Davis, J. Pienaar, R. Riddle, T. Shpeisman, N. Vasi-
lache, O. Zinenko, MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation, in: Proc.
CGO 2021, IEEE/ACM, 2021, p. 2–14.

[8] C. Lattner, V. Adve, LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transforma-
tion, in: Proc. CGO 2004, IEEE, 2004, p. 75–86.

[9] P. A. Boncz, et al., Monet: A next-generation DBMS
kernel for query-intensive applications, 2002.

[10] T. Gubner, P. Boncz, Excalibur: A virtual machine
for adaptive fine-grained jit-compiled query execu-
tion based on voila, Proc. VLDB Endow. 16 (2022).

[11] T. Neumann, Efficiently Compiling Efficient Query
Plans for Modern Hardware., Proc. VLDB Endow.
4 (2011) 539–550.

[12] Y. Srikant, P. Shankar, The Compiler Design Hand-
book: Optimizations andMachine CodeGeneration,
CRC Press, 2003.

[13] C. Bertoni, J. Kwack, T. Applencourt, Y. Ghadar,
B. Homerding, C. Knight, B. Videau, H. Zheng,
V. Morozov, S. Parker, Performance portability
evaluation of opencl benchmarks across intel and
nvidia platforms, in: Proc. IPDPSW 2020, 2020, pp.
330–339.

[14] M. Jungmair, A. Kohn, J. Giceva, Designing an open
framework for query optimization and compilation,
Proc. VLDB Endow. 15 (2022) 2389–2401.

[15] J.-C. Wang, D. Ding, H. Wang, C. Christensen,
Z. Wang, H. Chen, J. Li, Polyjuice: High-
performance transactions via learned concurrency
control., in: OSDI, 2021, pp. 198–216.

[16] H. Pirk, O. R. Moll, M. Zaharia, S. Madden, Voodoo
- A Vector Algebra for Portable Database Perfor-
mance on Modern Hardware, Proc. VLDB Endow-
ment 9 (2016) 1707–1718.

[17] T. Kersten, V. Leis, A. Kemper, T. Neumann,
A. Pavlo, P. A. Boncz, Everything You Always
Wanted to Know About Compiled and Vectorized
Queries ButWere Afraid to Ask, Proc. VLDB Endow.
11 (2018) 2209–2222.

[18] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kem-
per, V. Leis, T. Mühlbauer, T. Neumann, M. Then,
Get Real: How Benchmarks Fail to Represent the
Real World, in: Proc. DBTest 2018, 2018, p. 1–6.

[19] Y. Li, J. M. Patel, WideTable: An Accelerator for
Analytical Data Processing, Proc. VLDB Endow. 7
(2014) 907–918.

	1 Introduction
	2 Background & Related Work
	2.1 MLIR
	2.2 Voila
	2.3 Previous Approaches

	3 Challenges for Adaptive Query Execution Frameworks
	4 A Transformation-Based Approach for Adaptivity
	5 Evaluation
	5.1 Dataset & Modifications
	5.2 Setup
	5.3 Adaptivity Behavior

	6 Conclusion & Future Work

